- 无标题文档
查看论文信息

论文题名(中文):

 桑黄多糖对2型糖尿病大鼠心肌保护作用研究    

作者:

 常悦    

学号:

 2021010831    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090202    

学科名称:

 农学 - 园艺学 - 蔬菜学    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 延边大学    

院系:

 农学院    

专业:

 园艺学    

第一导师姓名:

 刘迪    

第一导师学校:

 延边大学    

论文完成日期:

 2024-02-29    

论文答辩日期:

 2024-07-26    

论文题名(外文):

 Study on The Protective Effect of Sanghuangporus spp. on Myocardium of Type 2 Diabetes Rats    

关键词(中文):

 瓦尼桑黄多糖 糖尿病 心肌保护 肠道保护    

关键词(外文):

  Sanghuangporus vaninii polysaccharide Anti diabetes Myocardial protection Intestinal protection Intestinal microbiota    

论文文摘(中文):

桑黄是一类珍稀食药用真菌,其子实体因受野生产量少、生长周期长等因素制约,使得桑黄子实体的开发和利用受到了限制。发酵菌丝体不仅可以有效代替子实体避免应用限制,而且同样富含多种活性成分。其中多糖类物质具有抗氧化、抗肿瘤、免疫调节、抗炎、降血糖等功效,同时诸多研究表明桑黄多糖对糖尿病造成的威胁有缓解效果。2型糖尿病(type 2 diabetes,T2DM)是全国公共卫生最严重的问题之一,随着城市化、老龄化和肥胖率的增加,T2DM 问题日益严重,给个人和社会带来繁重负担。其并发症如糖尿病心脏病是威胁病患生命的主要原因。相关治疗所用的化学合生成类药物副作用逐渐显现,通过膳食途径摄入有效且安全的抗糖尿病成分,对于T2DM及其并发症的管理具有重要意义。本研究旨在通过对比不同桑黄菌丝体的多糖含量,筛选出多糖含量最高的桑黄菌丝体;利用单因素试验和正交试验的方法对瓦尼桑黄(S. vaninii)培养基配方和培养条件进行优化,选出最适瓦尼桑黄菌丝体多糖生长的培养基;利用脲链佐菌素(Streptozotocin,STZ)结合高糖高脂饲料诱导的方法,构建了T2DM大鼠模型,从氧化应激、炎症以及肠道菌群这三个维度,探究瓦尼桑黄多糖对T2DM大鼠心脏的保护效果,为该食用菌的临床应用提供实验依据。本文主要研究结果如下:

瓦尼桑黄菌丝体多糖(Sanghuangporus vaninii polysaccharide,SHP)含量高于桑树桑黄和暴马桑黄的菌丝体多糖,也高于瓦尼桑黄子实体多糖。通过单因素与正交试验对瓦尼桑黄菌丝体培养基进行配方和培养条件的优化,结果表明最佳优化条件为:200 g/L马铃薯、0.5 g/L MgSO4、1 g/L KH2PO4、20 g/L玉米粉、10 g/L黄豆粉、15% 麸皮水添加量、4% 接种量。

瓦尼桑黄多糖对T2DM大鼠的体重降低有明显缓解作用,并可以显著降低空腹血糖值及血清胰岛素水平,改善其葡萄糖耐量。瓦尼桑黄多糖随着剂量的增加,降低了血清总胆固醇(Total cholesterol, TC)、甘油三酯(Triglyceride, TG)和低密度脂蛋白胆固醇(Low density lipoprotein cholesterol, LDL-C)水平,高密度脂蛋白胆固醇(High-density lipoprotein cholesterol, HDL-C)变化不明显,使胰腺的胰岛细胞数目明显增加,细胞更加完整。表明瓦尼桑黄多糖对胰腺具有保护作用,具有抗糖尿病的功能。

瓦尼桑黄多糖能够缓解由 T2DM 导致的心肌组织空泡化和断裂,心肌酶乳酸脱氢酶(Lactate dehydrogenase,LDH)活力下降极显著,减少 LDH 外溢;上调了T2DM 大鼠心肌中总超氧化物歧化酶(Total superoxide dismutase, SOD)和过氧化氢酶(Catalase, CAT)活性,增强心肌抗氧化能力;抑制丙二醛(Malondialdehyde,MDA) 增加,减轻氧化应激损伤;抑制白介素-6(interleukin-6,IL-6)和白介素-1β(interleukin-1β,IL-1β)的水平,缓解由于炎症造成的损伤。起到保护心肌组织的作用,但在改善心肌组织炎症因子水平上效果不佳并呈现剂量依赖性。

4. 瓦尼桑黄多糖通过下调 unclassified_Desulfovibrionaceae 和 Blautia 相对丰度,上调 Akkermansia、Ruminococcus 和 [Ruminococcus]_torques_group 相对丰度改善患病大鼠的肠道菌群和肠道损伤。同时瓦尼桑黄多糖通过对肠道菌群的调节降低了脂多糖/内毒素(lipopolysaccharide,LPS) 和氧化三甲胺(trimethylamine oxide,TMAO)在血清中的含量减少氧化应激和炎症反应对心肌的伤害,起到保护心肌的作用。因此,本试验推测瓦尼桑黄多糖通过抑制 LPS、TMAO 的分泌来发挥对心肌组织的保护作用。

文摘(外文):

Sanghuangporus spp. is a rare edible and medicinal fungus, and its fruiting bodies are limited in development and utilization due to factors such as low wild yield and long growth cycles. Fermented mycelium not only effectively replaces fruiting bodies to avoid application limitations, but also contains a variety of active ingredients. Polysaccharides have antioxidant, anti-tumor, immune regulation, anti-inflammatory, hypoglycemic and other effects. At the same time, many studies have shown that Sanghuangporus spp. polysaccharide can alleviate the threat of diabetes. Type 2 diabetes (T2DM) is one of the most serious public health problems in China. With the increase of urbanization, aging and obesity rate, the problem of T2DM is becoming increasingly serious, which brings heavy burden to individuals and society. Its complications, such as diabetes and heart disease, are the main causes threatening the lives of patients. The side effects of chemosynthetic drugs used in related treatment are gradually emerging, and then obtaining effective and safe anti diabetes ingredients from diet has significant significance for T2DM and diabetes heart disease. Therefore, this study compared the polysaccharide content of different Sanghuangporus spp. mycelium and selected the Sanghuangporus spp. mycelium with the highest polysaccharide content; used single factor experiments and orthogonal experiments to optimize the formula of Sanghuangporus vaninii (S. vaninii) culture medium, and selected the most suitable culture medium for the growth of S. vaninii mycelium polysaccharides(SHP); A T2DM rat model was induced by STZ (Streptozotocin, STZ) and high sugar and high-fat diet. The protective effects of SHP on the heart of T2DM rats were clarified from three directions: oxidative stress, inflammation, and gut microbiota, providing experimental evidence for the clinical application of this edible mushroom. The main research and results of this article are as follows:

Polysaccharide content in the mycelium of S. vaninii is higher than that of Sanghuangporus sanghuang and Sanghuangporus buamii, and also higher than that of polysaccharides in the fruiting body of S. vaninii. The formula and cultivation conditions of S. vaninii mycelium culture medium were optimized through single factor and orthogonal experiments, and the results showed that the optimal conditions were: 200 g/L potato, 0.5 g/L MgSO4, 1 g/L KH2PO4, 20 g/L corn flour, 10 g/L soybean flour, 15% bran water, 4% inoculation.

2. SHP have a significant alleviating effect on weight loss in T2DM rats, and can significantly reduce fasting blood glucose and serum insulin levels, improving their glucose tolerance . As the dosage increased, SHP reduced serum total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) levels, whereas no significant changes in high-density lipoprotein cholesterol (HDL-C), resulting in a significant increase in the number of pancreatic islet cells and a more complete cell. The results showed that the SHP had protective effect on pancreas and anti diabetes function.

3. SHP can alleviate myocardial tissue vacuolization and rupture caused by T2DM, and the activity of myocardial enzyme lactate dehydrogenase (LDH) decreases significantly , reducing LDH overflow; Upregulated the activities of Total Superoxide Dismutase (SOD) and Catalase (CAT) in the myocardium of T2DM rats , enhancing myocardial antioxidant capacity; Inhibiting the increase of MDA and alleviating oxidative stress damage; Inhibition of IL-6 and IL-1 β. At a certain level, it can alleviate damage caused by inflammation. It has a protective effect on myocardial tissue, but its effect on improving the level of inflammatory factors in myocardial tissue is not satisfactory and shows a dose-dependent effect.

4. SHP improve the gut microbiota and intestinal injury of diseased rats by downregulating the relative abundance of unclassified Desulfovibrionaceae and Blautia, and upregulating the relative abundance of Akkermansia, Ruminococcus, and [Ruminococcus] torques_group. At the same time, SHP reduce the levels of LPS and TMAO in serum by regulating the gut microbiota, reducing the damage of oxidative stress and inflammatory reactions to the myocardium, and playing a protective role in the myocardium. Therefore, this article speculates that SHP exert a protective effect on myocardial tissue by inhibiting the secretion of LPS and TMAO.

参考文献:
[1] 戴玉成, 崔宝凯. 药用真菌桑黄种类研究[J/OL]. 北京林业大学学报, 2014, 36(5): 1-7.
[2] 王雨阳, 李正鹏, 陈万超, 等. 栽培地域和木屑对瓦尼桑黄子实体化学成分及生物活性的影响[J/OL]. 食用菌学报, 2023, 30(6): 76-85.
[3] 吴声华, 戴玉成. 药用真菌桑黄的种类解析[J/OL]. 菌物学报, 2020, 39(5): 781-794.
[4] 侯伟男, 朝克吐, 图力古尔. 蒙古桑黄——中国桑黄孔菌属一新种[J/OL]. 菌物学报, 2023, 42(4): 874-882.
[5] 崔诗遥. 桑黄多酚类化合物的成分鉴定及其抗肿瘤作用机制研究[D/OL]. 浙江大学, 2022[2024-03-27].
[6] 刘震, 侯万超, 牛华周, 等. 桑黄中黄嘌呤氧化酶抑制剂的筛选分离及质谱分析[J/OL]. 中国食品添加剂, 2023, 34(12): 8-17.
[7] ZHANG J J, CHEN B S, DAI H Q, et al. Sesquiterpenes and polyphenols with glucose-uptake stimulatory and antioxidant activities from the medicinal mushroom Sanghuangporus sanghuang[J/OL]. Chinese Journal of Natural Medicines, 2021, 19(9): 693-699.
[8] 祝梓旋, 张诗浩, 田兴, 等. 瓦尼桑黄核苷类成分的液体发酵工艺优化及其细胞毒活性[J/OL]. 华中师范大学学报(自然科学版), 2023, 57(6): 878-889.
[9] 徐伟芳, 白国法, 杜佳慧, 等. 不同来源桑黄菌种的鉴定及主要化学成分比较[J]. 蚕学通讯, 2023, 43(1): 27-35.
[10] 杨焱, 陈晓华, 戴玉成, 等. 我国桑黄产业发展现状、问题及展望:桑黄产业发展千岛湖宣言[J/OL]. 菌物学报, 2023, 42(4): 855-873.
[11] 魏宝红, 刘佳, 毕旺华, 等. 药用真菌桑黄的液态发酵工艺优化及体外抗肿瘤活性研究[J]. 生物化工, 2023, 9(4): 19-25.
[12] 马勇, 曹宁宁, 张剑飞, 等. 桑黄的人工栽培及药用功效研究进展[J]. 蚕学通讯, 2023, 43(3): 13-18.
[13] 朱姝枚. 忍冬桑黄发酵产黄酮类化合物的研究[D/OL]. 中南林业科技大学, 2023[2024-04-14].
[14] 张诗泉, 郭毓菲, 汪芷玥, 等. 茯苓液体发酵培养条件优化[J]. 食品工业, 2020, 41(4): 135-138.
[15] 刘海娟, 刘利娟, 郑素月, 等. 白灵菇液体发酵条件优化[J]. 北方园艺, 2021(18): 125-131.
[16] WAN X, JIN X, XIE M, et al. Characterization of a polysaccharide from Sanghuangporus vaninii and its antitumor regulation via activation of the p53 signaling pathway in breast cancer MCF-7 cells[J/OL]. International Journal of Biological Macromolecules, 2020, 163: 865-877.
[17] 张暴. 桑黄菌丝体多糖降血糖、保护肝功能生物活性研究[D/OL]. 东北师范大学, 2007[2023-12-25].
[18] 王朝瑞. 桑黄对糖尿病大鼠的干预效果及骨骼肌转录组学分析[D/OL]. 华中农业大学, 2021[2023-12-25].
[19] HOU R, ZHOU L, FU Y, et al. Chemical characterization of two fractions from Sanghuangporus sanghuang and evaluation of antidiabetic activity[J/OL]. Journal of Functional Foods, 2021, 87: 104825.
[20] 刘洋洋. 固态培养桑黄提取物降血糖作用及机理研究[D/OL]. 华中农业大学, 2021[2024-02-29].
[21] 赵天宇. 桑黄多糖颗粒制备工艺及其对C57BL/6小鼠溃疡性结肠炎抗炎机制的研究[D/OL]. 长春中医药大学, 2023[2024-02-28].
[22] ZHAO T, WANG J, WU Y, et al. Purification, characterization, anti-ulcerative colitis activity of Sanghuangporus vaninii acidic polysaccharide A-3 (SVP-A-3)[J/OL]. Carbohydrate Polymer Technologies and Applications, 2023, 6: 100387.
[23] 刘利娜, 王仁中, 吴丝雨, 等. 两种桑黄多糖的结构分析及其抗炎活性研究[J]. 安徽中医药大学学报, 2024, 43(1): 107-112.
[24] 谢正露, 王洋, 黄菊青, 等. 桑黄多糖调节NF-κB核转移的抗炎作用机制研究:基于LPS诱导的RAW264.7细胞模型[C/OL]//中国畜牧兽医学会兽医病理学分会第二十五次学术交流会、中国病理生理学会动物病理学专业委员会第二十四次学术研讨会、中国实验动物学会实验病理学专业委员会第四次学术研讨会、中国兽医病理学家第四次研讨会论文集. 中国畜牧兽医学会兽医病理学分会、中国病理生理学会动物病理学专业委员会、中国兽医病理学会, 2019: 11[2024-02-28].
[25] HU T, LIN Q, GUO T, et al. Polysaccharide isolated from Phellinus linteus mycelia exerts anti-inflammatory effects via MAPK and PPAR signaling pathways[J/OL]. Carbohydrate Polymers, 2018, 200: 487-497.
[26] 刘梦凡, 殷朝敏, 张琪, 等. 比较3种杨树桑黄提取物体外抗氧化、降血糖和抑菌活性[J/OL]. 食品安全质量检测学报, 2024, 15(3): 18-25.
[27] 于佳琪. 基于AFM技术的桑黄多糖体外抗氧化作用研究[D/OL]. 长春理工大学, 2023[2024-02-28].
[28] DONG Y, WANG T, GAN B, et al. Antioxidant activity of Phellinus igniarius fermentation mycelia contributions of different solvent extractions and their inhibitory effect on α-amylase[J/OL]. Heliyon, 2024, 10(1): e23370.
[29] 陈嘉鹤. 桑黄在中国的潜在分布、液体发酵培养与多糖抗氧化研究[D/OL]. 辽宁大学, 2024[2024-02-28].
[30] 陈巍, 刘蓓, 秦凤贤, 等. 日粮桑黄多糖对海兰褐蛋鸡生产性能、血清代谢指标和抗氧化能力的影响[J/OL]. 中国畜牧杂志, 2023, 59(1): 280-284.
[31] 王华林, 冯涵, 刘志国, 等. 桑黄多糖通过调节肝脏磷脂平衡增强小鼠胰岛素敏感性[C/OL]//多彩菌物 美丽中国——中国菌物学会2019年学术年会论文摘要. 中国菌物学会(Mycological Society of China), 2019: 1[2024-02-29].
[32] FENG H, ZHANG S, WAN J M F, et al. Polysaccharides extracted from Phellinus linteus ameliorate high-fat high-fructose diet induced insulin resistance in mice[J/OL]. Carbohydrate Polymers, 2018, 200: 144-153.
[33] 史得君, 崔清美, 齐欣, 等. 桑黄多糖对Ⅰ型糖尿病小鼠模型的影响[J/OL]. 延边大学农学学报, 2017, 39(3): 33-38.
[34] YAMAC M, ZEYTINOGLU M, SENTURK H, et al. Effects of Black Hoof Medicinal Mushroom, Phellinus linteus (Agaricomycetes), Polysaccharide Extract in Streptozotocin-Induced Diabetic Rats[J/OL]. International Journal of Medicinal Mushrooms, 2016, 18(4): 301-311.
[35] BAECHLE C, STAHL-PEHE A, PRINZ N, et al. Prevalence trends of type 1 and type 2 diabetes in children and adolescents in North Rhine-Westphalia, the most populous federal state in Germany, 2002-2020[J/OL]. Diabetes Research and Clinical Practice, 2022, 190: 109995.
[36] 李子悦, 方珈文, 林凯程. 1990—2019年中国归因于高体质指数的2型糖尿病疾病负担分析与预测研究[J]. 中国全科医学, 2024, 27(9): 1126-1133+1148.
[37] 中国2型糖尿病防治指南(2020年版)(上)[J/OL]. 中国实用内科杂志, 2021, 41(8): 668-695.
[38] 付姝颖. 基于骨骼肌和下丘脑转录组的急性运动改善GK大鼠高血糖的调控研究[D/OL]. 华南理工大学, 2022[2024-01-10].
[39] 郑尔昌, 邹金串, 薛成斌, 等. 糖尿病联合并发症发病风险计算与预测[J]. 华侨大学学报(自然科学版), 2022, 43(4): 498-510.
[40] 郑敏, 李东密. 糖尿病心脏病的中药及其制备研究进展[J]. 广东化工, 2023, 50(20): 62-63+71.
[41] 李芳, 吴志雄, 罗健, 等. 硫化氢对糖尿病大鼠心肌纤维化和MMP-2/TIMP-2表达的影响[J]. 重庆医学, 2015, 44(34): 4765-4767.
[42] 王东, 陈庭燕, 周坤, 等. 糖化白蛋白与糖化血红蛋白对2型糖尿病患者冠状动脉疾病的影响分析[J]. 解放军医药杂志, 2018, 30(3): 31-34.
[43] 高菲菲, 高晟, 韩秀江, 等. 糖尿病性心脏病188例中医证候初步研究[J/OL]. 内蒙古中医药, 2023, 42(5): 152-154.
[44] RUBLER S, DLUGASH J, YUCEOGLU Y Z, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis[J/OL]. The American Journal of Cardiology, 1972, 30(6): 595-602.
[45] 郑一意, 周迪夷. 基于AGEs-RAGE信号通路探索从脾论治糖尿病心肌病的科学内涵[J]. 浙江中西医结合杂志, 2024, 34(2): 182-185.
[46] 马金玲, 冷锦红. 基于NF-κB通路探讨中医药治疗糖尿病心肌病研究进展[J/OL]. 河南中医, 2024, 44(2): 317-324.
[47] 周彬, 钱孝贤. 糖尿病心肌病的研究进展[J]. 新医学, 2010, 41(3): 197-199+210.
[48] 陈艳艳, 周洁, 卢作维, 等. 糖尿病心肌病发病机制及治疗研究进展[J]. 解放军医学杂志, 2023, 48(8): 957-964.
[49] LU Q B, DING Y, LIU Y, et al. Metrnl ameliorates diabetic cardiomyopathy via inactivation of cGAS/STING signaling dependent on LKB1/AMPK/ULK1-mediated autophagy[J/OL]. Journal of Advanced Research, 2023, 51: 161-179.
[50] ZHOU Y, SUO W, ZHANG X, et al. Targeting mitochondrial quality control for diabetic cardiomyopathy: Therapeutic potential of hypoglycemic drugs[J/OL]. Biomedicine & Pharmacotherapy, 2023, 168: 115669.
[51] GRIENDLING K K, FITZGERALD G A. Oxidative Stress and Cardiovascular Injury: Part II: Animal and Human Studies[J/OL]. Circulation, 2003, 108(17): 2034-2040.
[52] FINCK B N, HAN X, COURTOIS M, et al. A critical role for PPARα-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: Modulation by dietary fat content[J/OL]. Proceedings of the National Academy of Sciences, 2003, 100(3): 1226-1231.
[53] 钟绍金, 韩珊颖, 何小爱, 等. 余甘子水提物对糖尿病模型大鼠脂质代谢紊乱和胰岛素抵抗的改善作用及机制研究[J]. 中国药房, 2023, 34(3): 327-332.
[54] YI J, ZHOU Q, HUANG J, et al. Lipid metabolism disorder promotes the development of intervertebral disc degeneration[J/OL]. Biomedicine & Pharmacotherapy, 2023, 166: 115401.
[55] 李薇薇, 李丽娟. 脂质代谢紊乱促进糖尿病进程的机制[J]. 中国老年学杂志, 2022, 42(6): 1490-1493.
[56] 李程程. 生酮饮食干预对糖尿病肾病小鼠脂质代谢紊乱的影响研究[D/OL]. 安徽医科大学, 2024[2024-02-29].
[57] WANG H, WANG L, HU F, et al. Neuregulin-4 attenuates diabetic cardiomyopathy by regulating autophagy via the AMPK/mTOR signalling pathway[J/OL]. Cardiovascular Diabetology, 2022, 21(1): 205.
[58] HAN X, ZHOU W, ZHANG J, et al. Linderalactone mitigates diabetic cardiomyopathy in mice via suppressing the MAPK/ATF6 pathway[J/OL]. International Immunopharmacology, 2023, 124: 110984.
[59] 王靖雯. 苏氨酸缓解镉暴露小鼠肝脏脂质代谢紊乱的作用及机制研究[D/OL]. 广东海洋大学, 2022[2024-02-29].
[60] MOHAN S, NAIR A, POORNIMA M S, et al. Vanillic acid mitigates hyperinsulinemia induced ER stress mediated altered calcium homeostasis, MAMs distortion and surplus lipogenesis in HepG2 cells[J/OL]. Chemico-Biological Interactions, 2023, 375: 110365.
[61] JAYATHILAKE W M N K, DE LAAT M A, FURR M, et al. Prolonged hyperinsulinemia increases the production of inflammatory cytokines in equine digital lamellae but not in striated muscle[J/OL]. The Veterinary Journal, 2024, 303: 106053.
[62] GARCÍA A P, GAYDOU L, PÉREZ E, et al. Insulin resistance induced by long-term hyperinsulinemia abolishes the effects of acute insulin exposure on cell-surface nicotinic acetylcholine receptor levels and actin cytoskeleton morphology[J/OL]. Biochemical and Biophysical Research Communications, 2023, 685: 149165.
[63] MONTAGNANI M, GOLOVCHENKO I, KIM I, et al. Inhibition of Phosphatidylinositol 3-Kinase Enhances Mitogenic Actions of Insulin in Endothelial Cells*[J/OL]. Journal of Biological Chemistry, 2002, 277(3): 1794-1799.
[64] MADONNA R, DE CATERINA R. Atherogenesis and Diabetes: Focus on Insulin Resistance and Hyperinsulinemia[J/OL]. Revista Española de Cardiología (English Edition), 2012, 65(4): 309-313.
[65] 孙立莹, 韩卓君, 王培利. 基于肠道菌群探讨心脾同治法治疗缺血性心脏病的机制[J]. 中西医结合心脑血管病杂志, 2024, 22(4): 758-761.
[66] 杨洁. 人体肠道菌群失衡与慢性疾病关系的研究[J]. 工业微生物, 2024, 54(1): 23-25.
[67] MOREIRA JÚNIOR R E, DE CARVALHO L M, DOS REIS D C, et al. Diet-induced obesity leads to alterations in behavior and gut microbiota composition in mice[J/OL]. The Journal of Nutritional Biochemistry, 2021, 92: 108622.
[68] DUAN X, ZHANG L, LIAO Y, et al. Semaglutide alleviates gut microbiota dysbiosis induced by a high-fat diet[J/OL]. European Journal of Pharmacology, 2024: 176440.
[69] 牛苗苗, 赵玉琼, 相磊, 等. 高脂高糖饮食对巴马小型猪肠道菌群的影响[J]. 实验动物科学, 2023, 40(3): 7-11.
[70] 马雷雷, 李静, 张婧, 等. 肠道菌群-菌群代谢产物-线粒体生物轴与糖尿病肾脏病[J]. 中国老年学杂志, 2024, 44(3): 735-739.
[71] 江育才. 2型糖尿病患者肠道菌群及细胞因子的变化分析[J/OL]. 中国微生态学杂志, 2016, 28(4): 429-431+435.
[72] 于晓依, 常畅, 陈天笑, 等. 王不留行黄酮苷改善糖尿病肾病小鼠肠道菌群紊乱和肾脏脂质沉积的研究[J/OL]. 华西药学杂志, 2024, 39(1): 36-42.
[73] 刘静, 李正伟, 殷悦, 等. 多囊卵巢综合征患者血清内毒素、TLR4表达水平及临床意义[J]. 中国性科学, 2024, 33(1): 79-82.
[74] 陈良, 赵敏蝶, 曹爱智, 等. 饲料中添加猪源胆汁酸对肉鸡体内LPS外排功能的研究[J]. 南京农业大学学报: 1-10.
[75] 问清江, 慕娟, 孙晓宇, 等. 右旋糖酐40制备过程中细菌内毒素含量的影响因素[J]. 微生物学杂志, 2023, 43(6): 81-88.
[76] 彭莉轩, 唐筱涵, 张和铃, 等. JQ1对脂多糖所致小鼠生精功能障碍的影响[J]. 中国男科学杂志, 2023, 37(5): 15-21.
[77] 牛鸿艳, 徐瑞屿, 周清丽, 等. 基于能量代谢探索猕猴桃多酚对脂多糖应激大鼠肠道损伤的缓解作用[C/OL]//Abstract Book of the 14th Asian Congress of Nutrition-The thematic areas. 亚洲营养学会联合会、中国营养学会, 2023: 1[2024-03-01].
[78] 元宝华, 李兴勇, 刘学睿, 等. 肠道菌群代谢产物氧化三甲胺介导骨质疏松机制研究[J]. 中国骨质疏松杂志, 2024, 30(2): 285-289.
[79] 孔丽娟, 姜晓静, 李平平. 氧化三甲胺干扰胰岛素靶细胞胰岛素敏感性的作用和机制研究[J/OL]. 药学学报, 2023, 58(12): 3637-3643.
[80] 余昭玮. 灵芝菌株诱变及新菌株液态发酵米糠麸皮全料的研究[D/OL]. 江苏大学, 2020[2024-04-14].
[81] 王皓, 刘迪, 陈功鑫, 等. 桑黄发酵培养不同时期菌丝体胞内单糖组成比较[J/OL]. 中国食用菌, 2021, 40(4): 61-67+74.
[82] 黄春红, 韩庆, 郭冬生. 野生马齿苋草粉粗多糖的提取及含量测定[J/OL]. 江苏农业科学, 2011, 39(4): 398-400.
[83] 蒋洁莹, 刘瑾. 鬼箭羽对糖尿病大鼠心肌组织氧化应激损伤及NFE2L2/HMOX1信号通路的影响[J/OL]. 中医药导报, 2022, 28(11): 6-11.
[84] 吴华英, 邓凯, 李静, 等. 益气活血方调控cAMP/Epac1/Rap1信号改善冠心病气虚血瘀证大鼠实验[J/OL]. 中国实验方剂学杂志: 1-12.
[85] 刘颖. 桑黄通泻方对2型糖尿病模型大鼠心肌损伤的保护作用及机制[D/OL]. 华北理工大学, 2023[2024-01-12].
[86] 黄荣江, 辛文彬, 倪向敏, 等. 外用鱼油促进2型糖尿病大鼠伤口创面的愈合[J/OL]. 陆军军医大学学报, 2024, 46(6): 535-543.
[87] 吴睿婷, 付王威, 万敏, 等. 黑灵芝多糖对糖尿病大鼠血糖血脂调节及肠道菌群的影响[J]. 食品科学, 2022, 43(5): 91-102.
[88] 吴睿婷. 黑灵芝多糖对2型糖尿病大鼠的心肌保护作用研究[D/OL]. 南昌大学, 2022[2024-04-12].
[89] 赵洪强, 时敬爱, 王金权, 等. 大豆异黄酮调节Nrf2/HO-1信号通路对多囊卵巢综合征大鼠卵巢组织损伤的影响[J]. 中国药学杂志, 2023, 58(8): 699-707.
[90] 胡涛. 桑黄多糖抗炎与降脂功能的评估及其分子机理研究[D/OL]. 中南林业科技大学, 2020[2024-01-19].
[91] 程教擘, 李延啸, 王楠楠, 等. 瓜尔豆胶甘露寡糖对链脲佐菌素诱导2型糖尿病小鼠的降血糖作用[J]. 食品科学: 1-11.
[92] 郑马亮, 徐燕琴, 叶晶珠, 等. 大黄黄连泻心汤治疗2型糖尿病临床研究[J]. 光明中医, 2023, 38(24): 4819-4822.
[93] 杜樱洁, 冶岱蔚. 千金黄连丸及其拆方治疗2型糖尿病胰岛素抵抗的实验研究[J]. 新疆中医药, 2012, 30(4): 6-9.
[94] 张琳, 董鹏, 李友芳, 等. 口服葡萄糖耐量试验负荷后1小时血糖筛查糖调节受损和糖尿病的最佳切点值及糖调节受损患者转归的随访研究[J/OL]. 现代生物医学进展, 2023, 23(19): 3642-3645+3677.
[95] 黄雨澄, 董爱梅, 黄有媛, 等. 口服葡萄糖耐量试验中1小时血糖升高的意义研究进展[J]. 中国全科医学, 2022, 25(35): 4468-4472.
[96] 刘肖肖, 李强, 何洪波, 等. 通过口服葡萄糖耐量试验估算平均血糖的数学模型[J/OL]. 第三军医大学学报, 2021, 43(21): 2389-2394.
[97] ZHENG Q, ZHENG Y, JIA R B, et al. Fucus vesiculosus polysaccharide alleviates type 2 diabetes in rats via remodeling gut microbiota and regulating glycolipid metabolism-related gene expression[J/OL]. International Journal of Biological Macromolecules, 2023, 248: 126504.
[98] ZHOU Z, WEN M, XIANG L, et al. Segmental variations in intestinal microbiota composition and functional capacity along the digestive tract of Litopenaeus vannamei[J/OL]. Aquaculture Reports, 2024, 34: 101922.
[99] 杨帅勇, 卿志星, 刘华, 等. 黄芩黄酮对小鼠生长性能和抗氧化能力及盲肠微生物的影响[J/OL]. 湖南农业大学学报(自然科学版), 2023, 49(2): 212-217.
[100] 罗权, 刘睿颖, 李琼, 等. 粉葛多糖改善金黄地鼠非酒精性脂肪肝及对肠道菌群的调节作用[J/OL]. 食品安全质量检测学报, 2023, 14(4): 274-281.
[101] 石河, 梅景晨, 李荣雪, 等. 桑黄多糖的提取分离及药理作用研究进展[J]. 药物评价研究, 2023, 46(6): 1360-1368.
[102] 李田. 不同桑黄菌种鉴定及其固态培养物总黄酮提取工艺及功效研究[D/OL]. 华中农业大学, 2023[2024-03-19].
[103] 殷朝敏, 李雨鸿, 范秀芝, 等. 杨树桑黄功能活性挖掘及其降尿酸机制研究[C/OL]//第十二届药用真菌学术研讨会论文集. 中国食用菌协会、中国食用菌协会药用真菌委员会, 2023: 1[2024-03-19].
[104] LI T, YANG Y, LIU Y, et al. Physicochemical characteristics and biological activities of polysaccharide fractions from Phellinus baumii cultured with different methods[J/OL]. International Journal of Biological Macromolecules, 2015, 81: 1082-1088.
[105] 花慧, 祝超瑜, 肖元元, 等. 2型糖尿病患者胰腺脂肪沉积的影响因素及其与胰岛功能的相关性分析[J]. 解放军医学杂志: 1-8.
[106] 王志刚, 齐峰, 李英红, 等. 基于网络药理学和分子对接探讨菟丝子治疗胰岛素抵抗的作用机制[J/OL]. 临床合理用药, 2024, 17(8): 1-6+15+181.
[107] 殷浩. 治疗糖尿病的新技术:胰岛细胞移植[J]. 世界科学, 2022(10): 39-42.
[108] 周嘉琪, 林介夫, 陈嘉佳, 等. 靶向CD36调控脂质代谢:糖尿病心肌病防治新靶点[J/OL]. 中国动脉硬化杂志, 2023, 31(12): 1013-1019.
[109] AJIBOYE B O, FOLORUNSO I M, AKINFEMIWA K I, et al. Alkaloid-rich extract of Lannea egregia leaf protect against cardiomyopathy in streptozotocin-induced type 2 diabetic rats[J/OL]. Phytomedicine Plus, 2024, 4(1): 100513.
[110] 魏柯健, 俞静静, 苏洁, 等. 探讨保元汤加减方通过AMPK/SIRT1/PGC-1α通路对小鼠的抗疲劳作用[J]. 北京中医药大学学报, 2023, 46(12): 1716-1727.
[111] 亢玉静, 郎明远, 赵文. 水生生物体内抗氧化酶及其影响因素研究进展[J]. 微生物学杂志, 2013, 33(3): 75-80.
[112] 唐家铭, 蒋乐霞, 张长峰, 等. 维生素E对鲫鱼降温胁迫下脑组织氧化应激、抗氧化指标及肌肉组织结构的影响[J/OL]. 食品与发酵工业: 1-7.
[113] 宋琪, 阿不都呼甫尔夏木西卡玛尔, 杨丽斌. 还原型谷胱甘肽联合益生菌辅助治疗对2型糖尿病患者糖脂代谢、炎症以及氧化应激指标的影响[J]. 国际检验医学杂志, 2024, 45(5): 539-543+548.
[114] YANG M, LV J, YANG J, et al. Effects of Codonopsis pilosula crude polysaccharides by hypoglycemic and modulating gut microbiome in a high-fat diet and streptozotocin-induced mouse model of T2DM[J/OL]. Journal of Functional Foods, 2023, 111: 105893.
[115] 马明艳, 陈雪莲, 王淑霞, 等. 肠道微生物与肥胖关系的研究进展[J/OL]. 中国食物与营养, 2023, 29(5): 73-76+80.
[116] 刘恭孝, 谢磊, 甄学静, 等. 青钱柳发酵物对2型糖尿病合并肝损伤大鼠糖脂代谢及肠道菌群的调节作用[J/OL]. 食品与发酵工业: 1-11.
[117] 张慧, 杨勇江, 肖珊, 等. 冠心病病人肠道菌群代谢物与冠状动脉血流储备的关系探讨[J]. 中西医结合心脑血管病杂志, 2024, 22(5): 884-887.
[118] 甘海清, 陈佳亿, 夏艳菊, 等. 枸杞多糖对阿司匹林诱导小鼠肠道损伤的保护作用[J]. 饲料研究: 1-13.
[119] 刘信江. 基于基因组分析的疣微菌特性研究及海洋疣微菌的分离培养[D/OL]. 山东大学, 2024[2024-03-21].
[120] 何倩, 杨建, 陈冰婷, 等. 基于16S rRNA测序对2型糖尿病患者肠道菌群特征的分析[J]. 新疆医科大学学报, 2022, 45(11): 1262-1268.
[121] CUI W, SONG X, LI X, et al. Structural characterization of Hericium erinaceus polysaccharides and the mechanism of anti-T2DM by modulating the gut microbiota and metabolites[J/OL]. International Journal of Biological Macromolecules, 2023, 242: 125165.
[122] SHREE S, SUMAN E, KOTIAN H, et al. Effect of Klebsiella-specific phage on multidrug-resistant Klebsiella pneumoniae- an experimental study[J/OL]. Indian Journal of Medical Microbiology, 2024, 47: 100515.
[123] 余思萍. 特女贞苷改善2型糖尿病小鼠胰岛素抵抗的机制研究[D/OL]. 广东药科大学, 2022[2024-03-21].
[124] 张永金. 基于肠道菌群和代谢组学探究驼乳肽对2型糖尿病小鼠血糖调节的影响[D/OL]. 西北农林科技大学, 2023[2024-03-21].
[125] LIU H, FENG C, YANG T, et al. Combined metabolomics and gut microbiome to investigate the effects and mechanisms of Yuquan Pill on type 2 diabetes in rats[J/OL]. Journal of Chromatography B, 2023, 1222: 123713.
[126] 李泽. 肠道菌群失调诱导的维生素A代谢异常对小鼠卵巢机能的影响[D/OL]. 吉林大学, 2023[2024-03-21].
[127] THORNTON T, MILLS D, BLISS E. The impact of lipopolysaccharide on cerebrovascular function and cognition resulting from obesity-induced gut dysbiosis[J/OL]. Life Sciences, 2024, 336: 122337.
[128] OGUNRO O B, ASEJEJE F O, HAMZAT Z O. Influence of sodium benzoate in lipopolysaccharide-induced testicular toxicity in Wistar rats[J/OL]. Kuwait Journal of Science, 2024, 51(1): 100148.
[129] DA SILVA A A F, FIADEIRO M B, BERNARDINO L I, et al. Lipopolysaccharide-induced animal models for neuroinflammation – An overview.[J/OL]. Journal of Neuroimmunology, 2024, 387: 578273.
[130] 杨浩, 王同尧, 潘苗苗, 等. 健康增龄人群血浆氧化三甲胺水平与年龄和性别的相关性研究[J]. 老年医学与保健, 2024, 30(1): 23-27+32.
[131] 王国军, 时宽龙. 血清氧化三甲胺、苯乙酰谷氨酰胺联合心电图参数对慢性心力衰竭患者并发心房颤动的预测价值[J/OL]. 中国医药指南, 2024, 22(6): 31-33.
[132] 王时云, 陈露露, 方青, 等. 抗菌药物静脉给药对血浆氧化三甲胺水平的影响[J]. 中国药业, 2024, 33(2): 32-36.
[133] 宋玮, 张钟艺, 王楷, 等. 茱萸丸抑制氧化三甲胺介导的ROS/TXNIP/NLRP3信号通路诱导血管内皮细胞焦亡[J]. 中草药, 2024, 55(4): 1215-1227.
开放日期:

 2024-08-16    

无标题文档