- 无标题文档
查看论文信息

论文题名(中文):

 右美托咪定对小鼠肝损伤的保护作用及其机制研究    

作者:

 陶胥龙    

学号:

 2019010496    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 100217    

学科名称:

 医学 - 临床医学 - 麻醉学    

学生类型:

 硕士    

学位:

 医学硕士    

学校:

 延边大学    

院系:

 医学院    

专业:

 麻醉学    

第一导师姓名:

 南勇善    

第一导师学校:

 延边大学    

论文完成日期:

 2022-05-21    

论文答辩日期:

 2022-05-28    

论文题名(外文):

 The protective of dexmedetomidine on liver injury in mice its mechanism    

关键词(中文):

 右美托咪定 肝纤维化 胆汁淤积 药物性肝损伤 氧化应激 炎症反应    

关键词(外文):

 dexmedetomidine hepatic fibrosis cholestasis drug induced liver injury oxidative stress inflammatory reaction    

论文文摘(中文):

目的:通过观察右美托咪定(Dexmedetomidine, DEX)对两种因素诱导的肝损伤模型小鼠的影响,探讨右美托咪定对小鼠肝损伤的保护作用,并试图阐明其可能作用机制。

方法:第一部分采用胆管结扎法(Bile Duct Ligation, BDL)建立胆汁淤积性肝纤维化小鼠模型,将40只C57/BL6小鼠随机分成四组,每组10只,分为正常对照组(CON组,假手术+腹腔注射等量生理盐水),模型组(MOD组,BDL+腹腔注射等量生理盐水),阳性对照组(PC组,BDL+腹腔注射秋水仙碱0.2mg/kg),右美托咪定组(DEX组,BDL+腹腔注射右美托咪定10μg/kg)。CON组只打开腹腔不结扎,禁食不禁水12h,麻醉后处死小鼠。采集小鼠血清,微板法测定血清谷丙转氨酶(Alanine Transaminase,ALT)、谷草转氨酶(Aspartate Transaminase,AST)含量。采用ELISA法检测小鼠血清中Ⅲ型前胶原(Procollagen Type Ⅲ ,PC-Ⅲ)、Ⅳ型胶原(Type Ⅳ collagen,Ⅳ-C)和肝组织中肿瘤坏死因子-ɑ(Tumor Necrosis Factor-ɑ, TNF-ɑ)、白介素-6(Interleukin-6, IL-6)、白介素-1β(Interleukin-1β,IL-1β)的水平。测定小鼠肝脏组织中超氧化物歧化酶(Superoxide Dismutase, SOD)、丙二醛(Malondialdehyde , MDA)、谷胱甘肽(Glutathione,GSH)、谷胱甘肽过氧化物酶(Glutathione peroxidase,GSH-PX)的活性。分别进行HE、Masson、天狼猩红染色,观察肝组织病理形态变化。利用Western blot法检测小鼠肝脏组织中磷脂酰肌醇3-激酶(Phosphatidylinositol3-kinases,PI3K)、蛋白激酶B (Protein kinase B,AKT)、核因子E2相关因子(Erythroid transcription factor NF-E2,Nrf2)、血红素加氧酶-1(Heme oxygenase-1,HO-1)、核转录因子-κB(Nuclear factor kappa-B,NF-κB)、TNF-ɑ、IL-6蛋白因子表达水平。

第二部分采用对乙酰氨基酚(Acetaminophen, APAP)诱导形成药物性肝损伤小鼠模型。将40只C57/BL6小鼠随机分成四组,每组10只,分为正常对照组(CON组,腹腔注射等量生理盐水),模型组(MOD组,腹腔注射APAP 200mg/kg),阳性对照组(PC组,腹腔注射APAP200mg/kg+秋水仙碱0.2mg/kg),右美托咪定组(DEX组,腹腔注射APAP200mg/kg+右美托咪定10μg/kg)。禁食不禁水12h,麻醉后处死小鼠。采集小鼠血清,微板法测定ALT、AST含量。测定小鼠肝组织中SOD、MDA、GSH、GSH-PX活性。采用ELISA法检测血清中TNF-α、IL-6、IL-1β的水平。利用HE染色观察肝组织病理形态改变。利用Western blot法检测模型小鼠肝脏组织中PI3K、AKT、Nrf2、HO-1和NF-κB、TNF-ɑ、IL-6蛋白表达水平。

结果:

1、BDL模型,与CON组比较,MOD组小鼠脏器指数明显增高,血清中ALT和AST水平升高(P<0.05),PC-III和IV-C含量升高(P<0.05),GSH、MDA水平升高(P<0.05),SOD、GSH-PX活性降低(P<0.05),TNF-α、IL-6、IL-1β水平明显升高(P<0.05)。与MOD组比较,DEX组小鼠脏器指数明显降低,血清中ALT和AST水平降低(P<0.05),PC-III和IV-C含量降低(P<0.05),SOD、GSH-PX活性增高(P<0.05),GSH、MDA含量减少(P<0.05),TNF-α、IL-6、IL-1β明显降低(P<0.05)。HE染色显示,CON组肝组织形态结构正常,MOD组肝细胞水肿,炎症浸润和局灶坏死,DEX组细胞水肿减轻,仅见少量炎症细胞浸润。Masson染色显示,MOD组肝组织纤维增多,DEX组肝组织纤维减少。天狼猩红染色显示,MOD组肝组织纤维增多,DEX组肝组织纤维减少。Western blot检测结果显示,与CON组比较,MOD组PI3K/AKT蛋白表达水平升高(P<0.05),Nrf2/HO-1蛋白表达水平降低(P<0.05),P65、IKBα、TNF-α、IL-6蛋白表达水平增高(P<0.05)。与MOD组比较,DEX组降低模型小鼠肝组织中PI3K/AKT蛋白表达水平(P<0.05),提高Nrf2/HO-1蛋白表达水平(P<0.05),降低模型小鼠肝组织中P65、IKBα、TNF-α、IL-6蛋白表达水平(P<0.05)。

2、APAP模型,与CON组比较,MOD组血清中ALT和AST水平升高(P<0.05),GSH、MDA水平升高(P<0.05),SOD、GSH-PX活性降低(P<0.05),TNF-α、IL-6、IL-1β水平明显增高(P<0.05)。与MOD相比,DEX组血清中ALT和AST水平降低(P<0.05),SOD、GSH-PX含量增高(P<0.05),GSH、MDA含量减少(P<0.05),TNF-α、IL-6、IL-1β明显降低(P<0.05)。HE染色显示,CON组肝组织形态结构正常,MOD组肝细胞水肿,炎症浸润和局灶坏死,DEX组细胞水肿减轻,仅见少量炎症细胞浸润。Western blot检测结果显示,与CON组比较,MOD组PI3K/AKT蛋白表达水平增高(P<0.05),Nrf2/HO-1蛋白表达水平降低(P<0.05),P65、IKBα、TNF-α、IL-6蛋白表达水平增高(P<0.05)。与MOD组比较,DEX组降低模型小鼠肝组织中PI3K/AKT蛋白表达水平(P<0.05),提高NrF2/HO-1蛋白表达水平(P<0.05)。DEX组降低模型小鼠肝组织中P65、IKBα、TNF-α、IL-6蛋白表达水平(P<0.05)。

结论:

1、右美托咪定对胆汁淤积小鼠肝纤维化和APAP致药物性肝损伤小鼠的肝脏损伤有改善作用。

2、右美托咪定对两种因素致肝损伤模型小鼠肝脏的保护作用机制,可能与其能够降低体内氧化应激和炎症水平有关,并通过调节PI3K/AKT/Nrf2和NF-κB/IKBα/TNF信号通路发挥一定作用。

关键词:右美托咪定;肝纤维化;胆汁淤积;药物性肝损伤;氧化应激;炎症反应

文摘(外文):

Objective: To observe the effect of dexmedetomidine on liver injury model mice induced by two factors, this paper discusses the protective effect of dexmedetomidine on liver injury in mice, and tries to clarify its possible mechanism.

Methods: In the first part, the mouse model of cholestatic hepatic fibrosis was established by bile duct ligation (BDL). Forty C57/BL6 mice were randomly divided into four groups. They were divided into Control group (CON group,sham operation+ intraperitoneal injection of the same amount of normal saline), Model group (MOD group, bdl+ intraperitoneal injection of the same amount of normal saline), Positive control group (PC group, bdl + intraperitoneal injection of colchicine 0.2mg/kg), Dexmedetomidine control group (DEX group, bdl + intraperitoneal injection of dexmedetomidine 10μg/kg). The CON group only open the abdominal cavity without ligation. Fasting can not help water for 12 hours. The mice were killed after anesthesia. The serum of mice was collected and the contents of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured by microplate method. ELISA was used to detect type Ⅲ procollagen (PC-Ⅲ), type Ⅳ collagen (Ⅳ-C) in mouse serum and tumor necrosis factor in liver tissue- ɑ (Tumor Necrosis Factor-ɑ, TNF-ɑ)、 Interleukin-6 (IL-6), interleukin-1β(IL-1β). The activities of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH) and glutathione peroxidase (GSH PX) in mouse liver were measured. He, Masson and Sirius red staining were performed to observe the pathological changes of liver tissue. Western blot was used to detect the expression level of phosphatidylinositol 3-kinases (PI3K), protein kinase B (AKT), nuclear factor E2 (Nrf2), heme oxygenase-1 (HO-1) and nuclear transcription factor in mouse liver-κB(Nuclear factor kappa-B, NF-κB)、TNF- ɑ、IL-6 protein factor.

In the second part, the mouse model of drug-induced liver injury was induced by acetaminophen (APAP). Forty C57/BL6 mice were randomly divided into four groups with 10 mice in each group. They were divided into normal control group (CON group, intraperitoneal injection of the same amount of normal saline), model group (MOD group, intraperitoneal injection of APAP 200mg/kg), positive control group ( PC group,intraperitoneal injection of APAP 200mg/kg and colchicine 0.2mg/kg) and dexmedetomidine group (DEX group, intraperitoneal injection of APAP 200mg/kg and dexmedetomidine 10μg/kg). Fasting can not help water for 12 hours. The mice were killed after anesthesia. The serum of mice was collected and the contents of ALT and AST were measured. The activities of SOD, MDA, GSH and GSH-PX in mouse liver were measured. The level of  TNF- α、IL-6、IL-1β were detected by ELISA. HE staining was used to observe the pathological changes of liver tissue. Western blot was used to detect the expression level of PI3K、Akt、Nrf2、HO-1、NF-κB、TNF- ɑ、IL-6.

Results:

1、BDL model, compared with MOD group, the organ index,the levels of ALT and AST in serum, the contents of pc-Ⅲ and IV-C, GSH and MDA in mod group increased significantly (P<0.05),the activities of SOD and GSH-PX decreased(P<0.05),the level of TNF- α、IL-6、IL-1β increased significantly (P<0.05). Compared with MOD group, the organ index, the level of ALT and AST in serum, the contents of pc-Ⅲ and IV-C, GSH and MDA in mod group decreased significantly (P<0.05), the activities of SOD and GSH-PX increased(P<0.05), the level of TNF- α、IL-6、IL-1β decreased significantly (P<0.05). HE staining showed that the morphological structure of liver tissue was normal in CON group, hepatocyte edema, inflammatory infiltration and focal necrosis in MOD group, and cell edema was reduced in DEX group, with only a small amount of inflammatory cell infiltration. Masson staining showed that the liver tissue fibers increased in mod group and decreased in DEX group. Sirius red staining showed that liver tissue fibers increased in mod group and decreased in DEX group. Western blot showed that compared with con group, the expression level of PI3K/Akt protein in mod group increased (P<0.05), the expression level of Nrf2/HO-1 protein decreased (P <0.05), the expression level of p65、IKB α、TNF- α、IL-6 protein increased (P<0.05). Compared with MOD group, DEX group decreased the expression level of PI3K/Akt protein in liver tissue of model mice (P<0.05), increased the expression level of Nrf2/HO-1 (P<0.05), the expression level of p65、IKB α、TNF- α、IL-6 decreased (P<0.05).

2、APAP model, compared with con group, the serum levels of ALT and AST in mod group increased (P<0.05), the levels of GSH and MDA increased (P<0.05), the activities of SOD and GSH-PX decreased (P<0.05),the level of TNF-α、IL-6、IL-1β increased significantly (P<0.05). Compared with MOD group, the serum ALT and AST level in DEX group decreased (P<0.05), the contents of SOD and GSH-PX increased (P<0.05), the contents of GSH and MDA decreased (P<0.05), the level of TNF- α、IL-6、IL-1β significantly decreased (P<0.05). HE staining showed that the morphological structure of liver tissue was normal in CON group, hepatocyte edema, inflammatory infiltration and focal necrosis in MOD group, and cell edema was reduced in DEX group, with only a small amount of inflammatory cell infiltration. Western blot showed that compared with CON group, the expression level of PI3K/Akt protein in MOD group increased (P<0.05), the expression level of Nrf2/HO-1 protein decreased (P<0.05), the expression level of p65、IKBα、TNF- α、IL-6 protein increased (P<0.05). Compared with MOD group, DEX group decreased the expression level of PI3K/Akt protein in liver tissue of model mice (P<0.05) and increased the expression level of Nrf2/HO-1 protein (P<0.05). DEX group decreased the level of p65、IKBα、TNF- α、IL-6 protein (P<0.05).

Conclusion: 

1、Dexmedetomidine can improve the liver function of hepatic fibrosis in cholestatic mice and liver injury in APAP induced drug-induced mice.

2、The protective mechanism of dexmedetomidine on liver injury model mice caused by two factors be related, which may be reducing the level of oxidative stress and the production of inflammatory factors. Dexmedetomidine demonstrated a protective effect on liver damage potentially via activation of the PI3K/Akt/Nrf2 and NF-κB/IKBα/TNF-α signaling pathway.

Keywords: dexmedetomidine; hepatic fibrosis; cholestasis; drug induced liver injury; oxidative stress; inflammatory reaction

参考文献:
[1]Takaaki H, Scott L F, Yu J H. Hepatic stellate cells as key target in liver fibrosis. Advanced Drug Delivery Reviews,2017,121:27-42
[2]Chinese Society of Hepatology, Chinese Society of Gastroenterology, Chinese Society of Infectious Diseases, Consensus on the diagnosis and therapy of hepatic fibrosis. J Clin Hepatol,2019,35(10):2163-2172
[3]Ezhilarasan D. Oxidative stress is bane in chronic liver diseases: clinical and experimental perspective. Arab Journal of Gastroenterology,2018,19(2):56-64
[4]Caliri A W, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage and cancer. Reviews in Mutation Research,2021,787:e108365
[5]Cao L P, Li Z H, Yang Z Z, et al. Ferulic acid positively modulates the inflammatory response to septic liver injury through the GSK-3β/NF-κB/CREB pathway. Life Sciences,2021,277:e119584
[6]Motwani M P, Gilroy D W. Macrophage development and polarization in chronic inflammation. Seminars in Immunology,2015,27(4):257-266
[7]Zhang M F, Serna S S, Damba T, et al. Hepatic stellate cell senescence in liver fibrosis: characteristics mechanisms and perspectives. Mechanisms of Ageing and Development,2021,199:e111572
[8]吴新民,薛张纲,马虹,等.右美托咪定临床应用专家共识.临床麻醉学杂志,2018,34(8):820-823
[9]Zhao J, Qi Y F, Yu Y R. Stat3: a key regulator in liver fibrosis. Annals of Hepatology,2021,21:e100224
[10]Zhou H M, Sun J, Zhong W Z, et al. Dexmedetomidine preconditioning alleviated murine liver ischemia and reperfusion injury by promoting macrophage M2 activation via PPARγ/STAT3 signaling. International Immunopharmacology,2020, 82:e106363
[11]邹毅.右美托咪定对淤胆并肝纤维化大鼠肝脏缺血再灌注损伤的影响:[硕士学位论文].长沙:湖南师范大学,2015
[12]Lim H, Kim T Y, Kim S Y, et al. The protective effects of dexmedetomidine preconditioning on hepatic ischemia/reperfusion injury in rats. Transplantation Proceedings,2021,53(1):427-435
[13]Yang C M, He L L, Wang C, et al. Dexmedetomidine alleviated
[14]lipopolysaccharide/D-galactosamine-induced acute liver injury in mice. International Immunopharmacology, 2019,72:367-373
[15]Chen R L, Ma X. Pathogenesis of cholestasis-induced liver fibrosis and thoughts for blockade. J Clin Hepatol, 2019, 35(2):247-251
[16]Tag C G, Sauer-lehnen S, Weiskirchen S, et al. Bile duct ligation in mice: induction of inflammatory liver injury and fibrosis by obstructive cholestasis. Journal of Visualized Experiments,2015,10(96):e52438
[17]窦芊,李赢,王园园,等.小檗碱对肝硬化大鼠肝功能的保护及炎症抑制作用.广州中医药大学学报,2021,38(12):2708-2715
[18]Zhang Y, Miao H, Yan H Y, et al. Hepatoprotective effect of forsythiae fructus water extract against carbon tetrachloride-induced liver fibrosis in mice. Journal of Ethnopharmacology,2018,218:27-34
[19]Luangmonkong T, Suriguga S, Mutsaers H A. Targeting oxidative stress for the treatment of liver fibrosis. Reviews of Physiology, Biochemistry and Pharmacology,2018, 175:71-102
[20]李莲莲.谷胱甘肽对储存红细胞ATP、GSH-PX、SOD、MDA含量的影响:[硕士学位论文].遵义:遵义医科大学,2021
[21]Shikha S, Deependra S, Satish P, et al. Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders. International Journal of Biological Macromolecules,2017,101:502-517
[22]Allen K, Jaeschke H, Copple B L. Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am J Pathol,2011,178:175-186
[23]Baghaei K, Mazhari S, Tokhanbigli S, et al. Therapeutic potential of targeting regulatory mechanisms of hepatic stellate cell activation in liver fibrosis. Drug Discovery Today,2022,27(4):1044-1061
[24]Yang L, Fu W L, Zhu Y, et al. Tβ4 suppresses lincRNA-p21-mediated hepatic apoptosis and fibrosis by inhibiting PI3K-AKT-NF-κB pathway. Gene,2020,758:e144946
[25]Xiang D, Yang J Y, Xu Y J, et al. Estrogen cholestasis induces gut and liver injury in rats involving in activating PI3K/Akt and MAPK signaling pathways. Life Sciences,2021,276:e119367
[26]Lei Y, Wang Q L, Shen L, et al. MicroRNA-101 suppresses liver fibrosis by downregulating PI3K/Akt/mTOR signaling pathway. Clinics and Research in Hepatology and Gastroenterology,2019,43(5):575-584
[27]He L F, Guo C C, Peng C, et al. Advances of natural activators for Nrf2 signaling pathway on cholestatic liver injury protection: a review. European Journal of Pharmacolgy,2021,910:e174447
[28]刘烨. PI3K/AKT信号通路在右美托咪定对梗阻性黄疸大鼠肝细胞凋亡中的作用:[硕士学位论文].呼和浩特:内蒙古医科大学,2019
[29]赵芳.TNF-α介导的NF-κB通路在肝纤维化中的作用及中药对其影响: [硕士学位论文].大连:大连医科大学,2012
[30]Shen T, Huang X, Wang Y Y, et al. Current status of epidemiological study on drug-induced liver injury in China. J Clin Hepatol,2018,34(6):1152-1155
[31]杨红岩.不明原因肝损害的临床特征及病理特点回顾性分析:[硕士学位论文].长春:吉林大学,2020
[32]Yu P F, Wu Q, Duan Z P, et al. Research advances in the mechanism of drug-induced liver injury due to paracetamol. J Clin Hepatol,2019,35(9):2108-2112
[33]Bunchorntavakul C, Reddy K R. Acetaminophen (APAP or N-Acetyl-p-Aminophenol) and acute liver failure. Clinics in Liver Disease,2018,22(2):325-346
[34]Larsen F S, Wendon J. Understanding paracetamol-induced liver failure. Intensive Care Med. 2014, 40(6):888-890
[35]Woolbright B L, Woolbright H J, Jaeschke. The impact of sterile inflammation in acute liver injury. Journal of Clinical and Translational Research. 2017, 3(S1):170-188
[36]Mossanen J C, Tacke F. Acetaminophen-induced acute liver injury in mice. Laboratory Animals, 2015, 49(S1):30-36
[37]Chen Z, Ding T, Ma C G. Dexmedetomidine protects against hepatic ischemia/reperfusion injury by suppressing inflammation and oxidative stress in NLRC5 deficient mice. Biochemical and Biophysical Research Communications. 2017, 493(2):1143-1150
[38]方春秋,张文军,张景洲,等.常见肝损伤动物模型构建和应用的研究状况.中国临床药理学杂志,2022,38(3):276-280
[39]Yan M Z, Huo Y Z, Yin S, et al. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biology, 2018,17:274-283
[40]Geng W J, Liu H, Ding H G. Recent advances in drug-induced liver injury: potential mechanisms, pathological features and biomarkers. J Clin Hepatol,2019,35(4):925-929
[41]Gum S I, Cho M K. Recent updates on acetaminophen hepatotoxicity: the role of Nrf2 in hepatoprotection. Toxicological Research,2013,29(3):165-172
[42]Bataille A M, Manautou J E. Nrf2: a potential target for new therapeutics in liver disease. Clin Pharmacology Therapeutics,2012,92(3):340-348
[43]Saeedi B J, Liu K H, Owens J A, et al. Gut-resident lactobacilli activate hepatic Nrf2 and protect against oxidative liver injury. Cell Metabolism,2020,31(5):956-968
[44]徐伟,廖冬发,吴畏,等. IL-1β通过诱导氧化应激促进软骨表层细胞衰老.免疫学杂志, 2022, 38(02):164-169
Liu T, Zhang L, Joo D, et al. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy,2017,2:e17023
开放日期:

 2022-06-12    

无标题文档