题名: | 基于文本挖掘和LDA主题模型的中国乡村景观舆情分析 |
作者: | |
学号: | 2021050939 |
保密级别: | 保密3年内公开 |
语种: | chi |
学科代码: | 0973 |
学科: | 农学 - 风景园林学 |
学生类型: | 专业硕士 |
学位: | 农业硕士 |
学校: | 延边大学 |
院系: | |
专业: | |
导师姓名: | |
导师单位: | |
完成日期: | 2024-08-11 |
答辩日期: | 2024-07-24 |
外文题名: | Public Opinion Analysis of Chinese Rural Landscape Based on Text Mining and LDA Topic Model |
关键词: | |
外文关键词: | Rural landscape Public opinion analysis Text mining LDA model |
摘要: |
自中共十九大以来国家高度重视乡村振兴工作,乡村景观的发展建设得到人们的关注。习近平总书记在党的二十大报告强调:“加快建设农业强国,扎实推动乡村产业、人才、文化、生态、组织振兴。”乡村地区通常承载着悠久的历史和文化传统,乡村景观中的建筑、村庄、古迹、传统手工艺等都代表着人们的过去,是宝贵的文化遗产。同时,许多人也会选择乡村作为旅游目的地,来体验自然风光、乡村体验和丰富的文化活动。要留下美丽乡愁,人们不仅要有乡愁的情怀,还应有文化情怀和实际行动。然而,近年来在城镇化的快速推进下,村落空心化的问题日益严重,乡村景观正面临着各种各样的问题,个别乡村景观在建设中存在破坏自然环境和原有风貌、发展模式缺乏特色或缺乏有效维护和管理等情况。另外,在互联网快速发展的大数据时代背景下,人们对关心的事件和切身体验更愿意通过新浪微博等网络平台来表达自己的观点。微博拥有极其庞大的用户基数和良好的商业模式,用户群体高度活跃,在互联网平台中具有不可或缺的影响力。鉴于此,本文基于文本挖掘和LDA主题模型的舆情分析方法,以乡村景观为研究对象,通过Python采集和清洗数据后得到2011年至2023年共计85352条有效微博,并且利用SnowNLP情感分析和LDA模型实现情绪主题挖掘和强度分析。这一分析有助于政策制定和乡村景观建设者了解公众对乡村景观的态度,明确公众对于乡村景观关注的主题内容,找出消极情绪的来源。 主要的研究工作与结论如下: 本研究使用Python库SnowNLP模块来进行情感分析。针对乡村景观的数据训练自定义模型,然后进行情感分析。研究发现,2011-2023年公众对乡村景观的关注度持续上升,尤其在2017年开始快速上涨,这与乡村振兴战略的提出密切相关。利用LDA主题模型对清洗数据后的得到的乡村景观微博进行主题提取和可视化展示,研究结果表明公众对于乡村景观的情绪偏向积极和正面。 公众对乡村景观产生的积极情绪主要体现在:乡村旅游生态系统和乡村产业生态圈完善、乡村艺术风光优美、历史文化丰富、乡村振兴计划充分落实、乡村发展规划和旅游景区规划科学、乡村社区发展稳定、景区住宿服务优良、景观类型丰富、乡村周边设施规划完善等。公众对乡村景观产生的消极情绪主要体现在:乡村建设和规划不完善、综合发展较慢、生态景观建设不足、农业生产与农业发展不足、乡村生态保护与治理不够严格、文化遗产保护力度较弱、村民生活质量较低、产业建设不足、基础设施落后、智能化设备不足、旅游发展亟待提高、政策实施不力等相关问题。 良好的乡村旅游生态系统、乡村美化工程的整治、乡村振兴战略示范带、乡村发展的运营、乡村社区发展的统一、乡村绿化的发展、乡村水生态的建设、乡村生态园的建设、乡村花海景观的设计、乡村周边设施的建设和多样的乡村景观建设方式可更好的激发出公众的积极情绪。 针对上述研究结果,本文提出以下对策:一是加强乡村景观设计,树立鲜明特色。提升乡村景观设计的实用性和美观性,充分挖掘和利用乡村景观特色,注重乡村景观与农业生产的结合。二是提升村民生活环境与质量。在保护乡村生态环境的基础上,充分改善居住条件和基础设施,提升公共服务水平。三是建立大数据舆情管理机制。应用客观的网络大数据进行分析,通过大数据系统、无人机、遥感技术等,实现对乡村景观的实时和动态监测,充分利用利用增强现实(AR)和虚拟现实(VR)技术,建立数字化保护平台。 本文通过对乡村景观舆情的分析,帮助决策者更清晰的了解舆情在社交平台中的传播机制,从而能更有针对性的提出解决方案,这对乡村景观未来的发展具有重要意义。 |
外摘要要: |
Since the 19th National Congress of the Communist Party of China, the country has attached great importance to rural revitalization work, and the development and construction of rural landscapes in China have received widespread attention. Meanwhile, many people also choose rural areas as tourist destinations to experience natural scenery, rural experiences, and rich cultural activities. To leave behind beautiful homesickness, people should not only have nostalgia, but also cultural sentiments and practical actions. However, in recent years, with the rapid advancement of urbanization, the problem of hollowing out villages has become increasingly serious, and rural landscapes are facing various problems. Some rural landscapes in construction may damage the natural environment and original style, lack distinctive development models, or lack effective maintenance and management. In addition, in the era of big data with the rapid development of the Internet, people are more willing to express their views on the events they care about and their personal experiences through Sina Weibo and other online platforms. Weibo has an extremely large user base and a good business model. The user group is highly active and has an indispensable influence in the Internet platform. In view of this, this article is based on text mining and LDA topic model public opinion analysis methods, taking rural landscapes as the research object. After collecting and cleaning data through Python, a total of 85352 valid Weibo posts were obtained from 2011 to 2023. SnowNLP sentiment analysis and LDA model were used to achieve sentiment topic mining and intensity analysis. This analysis helps policy makers and rural landscape builders understand the public's attitude towards rural landscapes, clarify the theme of public concern for rural landscapes, and identify the sources of negative emotions. The main research work and conclusions are as follows: 1. This study used the SnowNLP module of the Python library for sentiment analysis. Train a custom model for rural landscape data and then perform sentiment analysis. Research has found that the public's attention to rural landscapes has continued to increase from 2011 to 2023, especially rapidly since 2017, which is closely related to the proposal of rural revitalization strategies. The LDA theme model was used to extract and visualize the themes of the rural landscape Weibo obtained after data cleaning. The research results showed that the public's emotions towards rural landscapes tended to be positive and positive. The positive emotions generated by the public towards rural landscapes are mainly reflected in the improvement of rural tourism ecosystems and industrial ecosystems, beautiful rural artistic landscapes, rich historical and cultural heritage, full implementation of rural revitalization plans, scientific planning of rural development and tourist attractions, stable development of rural communities, excellent accommodation services in scenic areas, diverse landscape types, and improved planning of rural surrounding facilities. The negative emotions generated by the public towards rural landscapes are mainly reflected in: incomplete rural construction and planning, slow rural comprehensive development, insufficient rural ecological landscape construction, insufficient agricultural production and development, inadequate rural ecological protection and governance, weak protection of rural cultural heritage, low quality of life of villagers, insufficient industrial construction, outdated rural infrastructure, insufficient intelligent equipment, urgent need to improve tourism development, and weak policy implementation. 2. A good rural tourism ecosystem, the renovation of rural beautification projects, the demonstration zone of rural revitalization strategy, the operation of rural development, the unity of rural community development, the development of rural greening, the construction of rural water ecology, the construction of rural ecological parks, the design of rural flower landscapes, the construction of rural surrounding facilities, and various rural landscape construction methods can better stimulate the positive emotions of the public. 3. In response to the above research results, this article proposes the following countermeasures: firstly, strengthen rural landscape design and establish distinctive features. Fully utilize landscape design methods to enhance the practicality and aesthetics of rural landscape design, fully tap and utilize the characteristics of rural landscape, and pay attention to the combination of rural landscape and agricultural production. The second is to improve the living environment and quality of villagers. On the basis of protecting the rural ecological environment, fully improve living conditions and infrastructure, and enhance the level of public services. The third is to establish a big data public opinion management mechanism. Using objective network big data for analysis, real-time and dynamic monitoring of rural landscapes can be achieved through big data systems, drones, remote sensing technology, etc. By fully utilizing augmented reality (AR) and virtual reality (VR) technologies, a digital protection platform can be established. This article analyzes the public opinion of rural landscapes to help decision-makers have a clearer understanding of the dissemination mechanism of public opinion on social platforms, so as to propose more targeted solutions. This is of great significance for the future development of rural landscapes. |
参考文献: |
[1] 蔡游强.浅谈对立统一手法在当代园林景观设计中的应用——以“万物大千事物存在的规律和既有理论”为例[J]. 四川建材. 2021,47(11).p163-164
﹀
[2] 牟磊.基于乡村振兴战略背景下乡村景观设计的探讨[J].住宅与房地产. 2019(06).p217 [3] Spedding R Agricultural. systems and the role of modelling[J]. Agricultural Ecosystems,1984,12(02):179-186 [4] Isabelle Poudevigne, Sabine van Rooij, Pierre Morin, Didier Alard. Dynamics of rural landscapes and their main driving factors:A case study in the SeineValley,Normandy, France[J]. Landscape and Urban Planning,1997, 38:93~103 [5] Isabel, M D S. Historic anthropogenic factors shaping the rural landscape of Portugal's Interior Alentejo[D].The University of Arizona,2001 [6] Palmer J F. Stability of landscape perceptions in the face of landscape change[J]. Landscape and Urban Planning,1997,37:109-113 [7] Cosgrove D E. Social formation and symbolic landscape[M].Univ of Wisconsin Press,1998:26-30 [8] Ryan R L. Preserving rural character in New England:local residents'perceptions of alternative residential development[J].Landscape and Urban Planning,2002,61(1):19-35 [9] Uriely N. The Tourist Experience: Conceptual Developments[J]. Annals of Tourism Research, 2005, 32(1): 199-216 [10] Loureiro S M C, González F J M. The Importance of Quality,Satisfaction,Trust,and Image in Relation to Rural Tourist Loyalty[J]. Journal of Travel & Tourism Marketing, 2008, 25(2): 117-136 [11] Campón - Cerro A M, Hernández - Mogollón J M, Alves H. Sustainable Improvement of Competitiveness in Rural Tourism Destinations: The Quest for Tourist Loyalty in Spain[J]. Journal of Destination Marketing & Management, 2016: 362-364 [12] Law R, Qi S, Buhalis D. Progress in Tourism Management: A Review of Website Evaluation in Tourism Research[J]. Tourism Management, 2010, 31(3): 297-313 [13] Litvin S W, Goldsmith R E, Pan B. Electronic Word of mouth in Hospitality and Tourism Management[J]. Tourism Management, 2008, 29(3): 458-468 [14] Banyai M, Glover T D. Evaluating Research Methods on Travel Blogs[J]. Journal of Travel Research, 2012, 51(3): 267-277 [15] Pan B, MacLaurin T, Crotts J C. Travel Blogs and the Implications for Destination Marketing[J]. Journal of Travel Research, 2007, 46(1): 35-45 [16] Sparks B A, Browning V. The Impact of Online Reviews on Hotel Booking Intentions and Perception of Trust[J]. Tourism Management, 2011, 32(6): 1310-1323 [17] Filieri R, McLeay F. E - WOM and Accommodation: An Analysis of the Factors That Influence Travelers' Adoption of Information from on Line Reviews[J]. Journal of Travel Research, 2013, 53(1): 44-57 [18] Sparks B A, So K K F, Bradley G L. Responding to Negative Online Reviews: The Effects of Hotel Responses on Customer Inferences of Trust and Concern[J]. Tourism Management, 2016, (53): 74-85 [19] 丁维,李正方,王长永.江苏省海门县农村生态. 评价方法[J]. 农村生态环境. 1994,10(2):38-40. [20] 肖笃宁,钟林生.景观分类与评价的生态原则[J]. 应用生态学报. 1998,9(2):217-221 [21] 谢花林,刘黎明,龚丹.乡村景观美感效果评价指标体系及其模糊综合评判——以北京市海淀区温泉镇白家疃村为例[J]. 中国园林. 2003,19(1):59-61 [22] 冯京昕,赫丽丝,谢来荣等. 地域文化视角下乡村景观风貌评价及提升策略——以杨家山里为例[C].中国城市规划年会. 2023 [23] 王欣言,李欢,丁涣茹等. 基于原住民地方感的乡村景观特征认知与评价体系构建——以北京怀柔北宅村为例[J]. 中国城市林业. 2024,22(01):157-163 [24] 王平,宋思邈.网络化时代“三农”问题舆情管理分析—基于乡村善治的视角[C]. 传媒法与法治新闻研究. 2016 [25] 李端.乡村网络形象与舆情治理[J]. 现代交际. 2016(12):p34-35 [26] 田嵩.乡村教育舆情治理:内涵、困境与对策[J]. 教育探索. 2021(12):p75-788 [27] 黄静.融媒体视域下乡村舆情引导困境与管理探究[J]. 新闻文化建设. 2023(07):p93-195 [28] 赵雪,马娟娟.基于词共现网络的对农微博热点话题及用户舆情分析—以中国乡村之声官方微博为例[J]. 新闻爱好者. 2019(11):47-50 [29] 谢仲文,陈一帆,王雷亭,田淑敏.应用舆情大数据监测乡村旅游动态变化的实验性研究[J]. 泰山学院学报. 2021,43(06):P62-68 [30] Agnoletti M. Italian Historical Rural Landscapes[M]. London-New York: Springer, 2013:78-86 [31] Pungetti G, Kruse A. Eucaland-European Culture expressed in Agricultural Landscapes, Perspectives from the Eucaland Project[M]. Rome: Palombi,2010: 224 [32] 莱奥内拉·斯卡佐西, 王溪, 李璟昱. 《国际古迹遗址理事会<关于乡村景观遗产的准则>(2017)产生的语境与概念解读》[J].中国园林. 2018,34(11):5-9 [33] 中国古迹遗址保护协会(ICOMOS China).关于乡村景观遗产的准则(中文版)[S].Principles Concerning Rural Landscape as Heritage(英文版),国际古迹遗址理事会,2017 [34] Galton F. Inquiries into Human Faculty and Its Development[M]. Whitefish: Kessinger Publishing Co,2004 [35] 李泽宇.体育领域问卷调查法的应用策略研究[D]. 太原理工大学硕士毕业论文,2022 [36] 风笑天.高回收率更好吗:对调查回收率的另一种认识[J].社会学研究,2007(3):121-135 [37] 王晓晖,风笑天.“多元建构”视角对问卷调查的方法论意义[J]. 南京社会科学, 2017(05):46-52 [38] 刘杰,高旸.马克思主义社会调查方法论的新时代发展[J]. 江苏社会科学. 2023(03):2-5 [39] 荆玲玲.社会研究方法[M].哈尔滨:哈尔滨工程大学出版社,2016 [40] 朱乙艺,洪赛宇.如何在调查研究中用好问卷调查法[J]. 福建教育. 2023(36):26-29 [41] Dornyei Z.&.Taguchi,T.Questionnaire in Second Language Research: Construction,Administration,and Processing(2nd ed.)[M].New York: Routledge,2010 [42] Bryman A. Social research methods (3rd ed) [M]. Oxford: Oxford University Press, 2008 [43] 金雨倩. 综合实践活动中问卷调查法的应用[J]. 学园. 2021,14(13):63-64 [44] Hopkins K D, Stanley J C. &Hopkins, B.R. Educational and Psychological Measurement and Evaluation (7th ed.) [M]. Englewood Cliffy NJ: Prentice Hall,1990 [45] 阎佳慧. 大数据时代互联网用户调查的发展研究[J].新媒体研究. 2023,9(12):12-15. [46] 吴丽敏. 大数据时代统计抽样调查工作面临的挑战与机遇探讨[J].国际公关. 2022(05):64-66 [47] 司马依·麦麦提. 基于人工智能的变更调查总体技术研究[J].测绘与空间地理信息. 2023,46(S1):81-83 [48] 王艺静.基于微博舆情事件的主题情感分析研究[D]. 贵州财经大学硕士毕业论文,2023. [49] 梁壮男.基于文本挖掘的智慧城市建设公众认知研究[J].科技和产业. 2024,24(03):92-97 [50] 何磊,佘世英,丘建栋,. 基于蒙特卡洛法的时间价值调查问卷精细化设计[C]. 第十五届中国智能交通年会科技论文集,2020 [51] 岳丽媛,郑泉.大数据信息收集处理与隐私权的公众理解研究——基于微博及调查问卷的分析[J].科普研究. 2023,18(02):92-99 [52] 曹彦波.基于新浪微博的2018年云南通海5.0级地震舆情时空特征分析[J].地震研究,2018,41(04):525-533 [53] 田向亮,钟茂华.基于微博网络爬虫的巴黎圣母院大火舆情分析[J].武汉理工大学学报(信息与管理工程版),2019,41(05):461-466 [54] 方园园.基于文本挖掘与情感分析的网络舆情分析——以“新冠肺炎疫情”为例[D]安徽财经大学硕士毕业论文,2021 [55] Ana Kozomara, Maria Birgaoanu, Sam Griffiths-Jones.miRBase: from microRNA sequences to function[J].Nucleic Acids Research,2019,47(D1) [56] Wu He, Shenghua Zha, Ling Li. International Journal of Information Management Social media competitive analysis and text mining : A case study in the pizza industry[J].International Journal of Information Management,2013,33(3) [57] 黄钦,杨芳,朱礼龙.基于文本挖掘的高校网络舆情研究热点及趋势分析[J].宜春学院学报. 2024,46(01):24-31 [58] 袁彦娟, 张之弘, 韩露. 基于在线大数据及文本挖掘技术的CPI预测研究[J].华北金融. 2024(01):85—94 [59] 刘桂海,崔福龙,卢彩菡. 公众对假房源的关注点和态度:基于微博评论的文本挖掘研究[J].管理评论. 2023,35(11):153-165 [60] 王媛, 许鑫, 冯学钢.基于文本挖掘的古镇旅游形象感知研究——以朱家角为例[J].旅游科学,2013,27(05):86-95 [61] 贺海玉. 基于电影网站短评数据的网络舆情文本挖掘与情感分析[J]. 现代信息科技. 2023,7(21):126-130 [62] 杨单, 程键, 姚怡琦, 等.基于文本挖掘的高校网络舆情用户情感分析研究[J].武汉纺织大学学报,2020,33(05):74-80 [63] Turney P Thumbs. Up or Thumbs Down Semantic Orientation Applied to Unsupervised Classification of Reviews[J].Association for Computational Linguistics,2002 [64] Pang B, Lee L, S Vaithyanathan. Thumbs up Sentiment Classif ication using Machine Learning Techniques[J].Empirial Methods in Natural Language Processing,2002:79-86 [65] Mike Thelwall, Kevan Buckley, Georgios Paltoglou.Sentiment strength detection for the social web[J].Journal of the American Society for Information Science and Technology,2012,63(1) [66] Stefan Stieglitz, Linh Dang Xuan. Emotions and Information Diffusion in Social Media Sentiment of Microblogs and Sharing Behavior [J]. Journal of Management Information Systems, 2013, 29 (4) [67] 刘志明, 刘鲁.基于机器学习的中文微博情感分类实证研究[J].计算机工程与应用,2012,48(01):1-4 [68] 梁军, 柴玉梅, 原慧斌, 等.基于深度学习的微博情感分析[J].中文信息学报,2014,28(05):155-161 [69] 陈晓东. 基于情感词典的中文微博情感倾向分析研究[D].华中科技大学,2012. [70] 吴青林, 周天宏. 基于话题聚类及情感强度的中文微博舆情分析[J].情报理论与实践,2016,39(01):109-112 [71] 安璐, 吴林. 融合主题与情感特征的突发事件微博舆情演化分析[J].图书情报工作,2017,61(15):120-129 [72] Fu Xianghua, Liu Guo, Guo Yanyan, Wang Zhiqiang.Multi-aspect sentiment analysis for Chinese online social reviews based on topic modeling and HowNet lexicon[J].Knowledge-Based Systems,2013,37 [73] Paul DiMaggio, Manish Nag, David Blei.Exploiting affinities between topic modeling and the sociological perspective on culture: Application to newspaper coverage of U.S. government arts funding[J].Poetics,2013,41(6) [74] Carina Jacobi, Wouter Van Atteveldt,Kasper Welbers.Quantitative analysis of large amounts of journalistic texts using topic modelling[J].Digital Journalism 2016, 4 (1) [75] 张晨逸,孙建伶,丁轶群.基于MB-LDA模型的微博主题挖掘[J].计算机研究与发展,2011,48(10):1795-1802 [76] 唐晓波,王洪艳.基于潜在狄利克雷分配模型的微博主题演化分析[J].情报学报,2013,32(03):281-287 [77] 陈晓美,高铖,关心惠.网络舆情观点提取的LDA主题模型方法[J].图书情报工作,2015,59(21):21-26 |
开放日期: | 2027-08-17 |